Diophantine approximation on Veech surfaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diophantine Approximation on Veech Surfaces

We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates. The sad...

متن کامل

Diophantine Approximation on Veech

— We show that Y. Cheung’s general Z-continued fractions can be adapted to give approximation by saddle connection vectors for any compact translation surface. That is, we show the finiteness of his Minkowski constant for any compact translation surface. Furthermore, we show that for a Veech surface in standard form, each component of any saddle connection vector dominates its conjugates in an ...

متن کامل

An Introduction to Veech Surfaces

2 We give a gentle introduction to the basics of Veech surfaces, with an emphasis on the Veech Dichotomy, followed by a sketch of the present state of the literature. These notes arose from lectures for a summer school held at the Institute de Mathématiques de Luminy in June 2003. We thank the participants, especially Jayadev Athreya who prepared an initial set of notes, and other speakers for ...

متن کامل

Diophantine approximation and Diophantine equations

The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...

متن کامل

Diophantine approximation on rational quadrics

We compute the Hausdorff dimension of sets of very well approximable vectors on rational quadrics. We use ubiquitous systems and the geometry of locally symmetric spaces. As a byproduct we obtain the Hausdorff dimension of the set of rays with a fixed maximal singular direction, which move away into one end of a locally symmetric space at linear depth, infinitely many times.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 2012

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.2636